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Abstract
An algebraic algorithm is developed for computation of invariants (‘generalized
Casimir operators’) of general Lie algebras over the real or complex number
field. Its main tools are the Cartan’s method of moving frames and the
knowledge of the group of inner automorphisms of each Lie algebra. Unlike
the first application of the algorithm in Boyko et al (2006 J. Phys. A: Math.
Gen. 39 5749 (Preprint math-ph/0602046)), which deals with low-dimensional
Lie algebras, here the effectiveness of the algorithm is demonstrated by its
application to computation of invariants of solvable Lie algebras of general
dimension n < ∞ restricted only by a required structure of the nilradical.
Specifically, invariants are calculated here for families of real/complex solvable
Lie algebras. These families contain, with only a few exceptions, all the
solvable Lie algebras of specific dimensions, for whom the invariants are found
in the literature.

PACS numbers: 02.20.−a, 02.20.Sv, 02.40.Vh
Mathematics Subject Classification: 17B05, 17B10, 17B30, 22E70, 58D19,
81R05

1. Introduction

The term Casimir operator was born in the physics literature about half a century ago as a
reference to [6]. At that time only the lowest rank Lie algebras appeared of interest. In
subsequent years the need to know the invariant operators of much larger Lie algebras grew
more rapidly in physics than in mathematics.

In the mathematics literature it was soon recognized that the universal enveloping algebra
U(g) of a semisimple Lie algebra g contains elements that commute with g, that there is a basis
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for all such invariants and that the number of basis elements coincides with the rank of g. The
degrees of the basis elements are given by the values of the exponents of the corresponding
Weyl group (augmented by 1). The exponents are listed in many reference texts, see for
example [3]. Best known are the Casimir operators of degree 2 for every semisimple Lie
algebra. The actual form of a Casimir operators depends on the choice of basis of g.

Soon after the analogous question about the invariant operators was asked also for non-
semisimple Lie algebras. An answer exhausting all cases appears out of reach at present.
However methods applicable to specific Lie algebras were invented and used [17].

There are numerous papers on properties and specific computation of invariant operators
of Lie algebras, on estimation of their number and on application of invariants of various
classes of Lie algebras, or even a particular Lie algebra which appears in physical problems
(see [1, 2, 4, 5, 13–15, 17, 19–22] and references therein).

The purpose of the paper is to present the latest version of the method first used for
low-dimensional Lie algebras in [2], and to demonstrate its effectiveness by computing
the invariants for families of solvable Lie algebras of general dimension. The families are
distinguished by the structure of the nilradicals of their Lie algebras.

The main advantage of the method is in that it is purely algebraic. It eliminates the
need to solve systems of differential equations of the conventional method, replacing them
by algebraic equations. Moreover, efficient exploitation of the new method imposes certain
constraints on the choice of bases of the Lie algebras. This then leads to simpler expressions
for the invariants. In some cases the simplification is considerable.

Our paper is organized as follows.
After short review of necessary notions and results in section 2, we formulate the

algebraic algorithm of the construction of the generalized Casimir operators of Lie algebras
(section 3). It is based on the approach introduced in [2] for the case of algebras of arbitrary
(fixed) dimension. The algorithm makes use of the Cartan’s method of moving frames in the
Fels–Olver version [7, 8]. More exactly, the notion of lifted invariants and different techniques
of excluding parameters are applied.

In section 4, an illustrative example on invariants of a six-dimensional algebras is given
for clear demonstration of features of the developed method. The main subject of our interest
in the present paper is invariants, generalized Casimir operators, of solvable Lie algebras of
arbitrary finite dimension n < ∞. For convenience all necessary notations are collected in
section 5. A number of families of Lie algebras are considered further. The families are
distinguished by the structure of their nilradicals. The invariant operators are found at once
for all members of the family.

The Lie algebras with Abelian ideals of codimension 1 are completely investigated in the
case of the both complex and real fields in section 6. The nilradicals of the algebras studied in
section 7 are isomorphic to the simplest filiform algebras. Consideration of nilpotent algebras
of strictly upper triangle matrices in section 8 is most sophisticated. At the same time, the
developed method allows us to clarify an origin of the Casimir operators for these algebras,
which was first found in [22].

All these examples illustrate various aspects and advantages of the proposed method.

2. Preliminaries

Consider a Lie algebra g of dimension dim g = n < ∞ over the complex or real field and the
corresponding connected Lie group G. Let g∗ be the dual space of the vector space g. The
map Ad∗: G → GL(g∗) defined for any g ∈ G by the relation

〈Ad∗
gx, u〉 = 〈x, Adg−1u〉 for all x ∈ g∗ and u ∈ g
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is called the coadjoint representation of the Lie group G. Here Ad: G → GL(g) is the usual
adjoint representation of G in g, and the image AdG of G under Ad is the inner automorphism
group Int(g) of the Lie algebra g. The image of G under Ad∗ is a subgroup of GL(g∗) and is
denoted by Ad∗

G.
A function F ∈ C∞(g∗) is called an invariant of Ad∗

G if F(Ad∗
gx) = F(x) for all g ∈ G

and x ∈ g∗.
The set of invariants of Ad∗

G is denoted by Inv(Ad∗
G). The maximal number Ng of

functionally independent invariants in Inv(Ad∗
G) coincides with the codimension of the regular

orbits of Ad∗
G, i.e. it is given by the difference

Ng = dim g − rank Ad∗
G.

Here rank Ad∗
G denotes the dimension of the regular orbits of Ad∗

G. It is a basis independent
characteristic of the algebra g, the same as dim g and Ng. Sometimes rank Ad∗

G is called as
the rank of the Lie algebra g or the Dixmier’s invariant. (Let us note that the first name is
more often used for other numerical characteristics of Lie algebras, which can differ from the
above one [9].)

To calculate invariants explicitly, one should fix a basis of the algebra. Any (fixed) set of
basis elements e1, . . . , en of g satisfies the commutation relations

[ei, ej ] = ck
ij ek, i, j, k = 1, . . . , n,

where ck
ij are components of the tensor of structure constants of g in the chosen basis.

Let x → x̌ = (x1, . . . , xn) be the coordinates in g∗ associated with the dual basis to
the basis e1, . . . , en. Given any invariant F(x1, . . . , xn) of Ad∗

G, one finds the corresponding
invariant of the Lie algebra g as symmetrization, Sym F(e1, . . . , en), of F. It is often called a
generalized Casimir operator of g. If F is a polynomial, Sym F(e1, . . . , en) is a usual Casimir
operator, i.e. an element of the centre of the universal enveloping algebra of g. More precisely,
the symmetrization operator Sym acts only on the monomials of the forms ei1 · · · eir , where
there are non-commuting elements among ei1, . . . , eir , and is defined by the formula

Sym
(
ei1 · · · eir

) = 1

r!

∑
σ∈Sr

eiσ1
· · · eiσr

,

where i1, . . . , ir take values from 1 to n, r ∈ N, the symbol Sr denotes the permutation group
of r elements. The set of invariants of g is denoted by Inv(g).

A set of functionally independent invariants F l(x1, . . . , xn), l = 1, . . . , Ng, forms a
functional basis (fundamental invariant) of Inv(Ad∗

G), i.e. any invariant F(x1, . . . , xn) can be
uniquely presented as a function of F l(x1, . . . , xn), l = 1, . . . , Ng. Accordingly the set of
Sym F l(e1, . . . , en), l = 1, . . . , Ng, is called a basis of Inv(g).

If the Lie algebra g is decomposable into the direct sum of Lie algebras g1 and g2 then
the union of bases of Inv(g1) and Inv(g2) is a basis of Inv(g). Therefore, for classification
of invariants of Lie algebras from a given class it is really enough for ones to describe only
invariants of the indecomposable algebras from this class.

Our task here is to determine the basis of the functionally independent invariants for Ad∗
G

and then to transform these invariants to the invariants of the algebra g. Any other invariant
of g is a function of the independent ones.

Any invariant F(x1, . . . , xn) of Ad∗
G is a solution of the linear system of first-order partial

differential equations

XiF = 0, i.e. ck
ij xkFxj

= 0,

where Xi = ck
ij xk∂xj

is the infinitesimal generator of the one-parameter group {Ad∗
G(exp εei)}

corresponding to ei . The mapping ei → Xi gives a representation of the Lie algebra g. It is
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faithful iff the centre of g consists of zero only. In the terms of structure constants for the fixed
basis, the rank of coadjoint representation can be found by the formula

rank Ad∗
G = sup

x̌∈Rn

rank
(
ck
ij xk

)n

i,j=1.

The standard method of construction of generalized Casimir operators consists of
integration of the above system of partial differential equations. It turns out to be rather
cumbersome calculations, once the dimension of Lie algebra is not one of the lowest few.
Alternative methods use matrix representations of Lie algebras. They are not much easier and
are valid for a limited class of representations.

The algebraic method of computation of invariants of Lie algebras presented in this paper
is simpler and generally valid. It extends to our problem the exploitation of the Cartan’s
method of moving frames [7, 8].

3. The algorithm

Let us recall some facts from [7, 8] and adapt them to the particular case of the coadjoint
action of G on g∗. Let G = Ad∗

G × g∗ denote the trivial left principal Ad∗
G-bundle over g∗.

The right regularization R̂ of the coadjoint action of G on g∗ is the diagonal action of Ad∗
G on

G = Ad∗
G × g∗. It is provided by the maps

R̂g(Ad∗
h, x) = (Ad∗

h · Ad∗
g−1 , Ad∗

gx), g, h ∈ G, x ∈ g∗,

where the action on the bundle G = Ad∗
G × g∗ is regular and free. We call R̂g the lifted

coadjoint action of G. It projects back to the coadjoint action on g∗ via the Ad∗
G-equivariant

projection πg∗ :G → g∗. Any lifted invariant of Ad∗
G is a (locally defined) smooth function

from G to a manifold, which is invariant with respect to the lifted coadjoint action of G. The
function I:G → g∗ given by I = I(Ad∗

g, x) = Ad∗
gx is the fundamental lifted invariant of

Ad∗
G, i.e. I is a lifted invariant and any lifted invariant can be locally written as a function

of I. Using an arbitrary function F(x) on g∗, we can produce the lifted invariant F ◦ I of
Ad∗

G by replacing x with I = Ad∗
gx in the expression for F. Ordinary invariants are particular

cases of lifted invariants, where one identifies any invariant formed as its composition with the
standard projection πg∗ . Therefore, ordinary invariants are particular functional combinations
of lifted ones that happen to be independent of the group parameters of Ad∗

G.
In view of the above consideration, the proposed algorithm for the construction of

invariants of Lie algebra g can be briefly formulated in the following four steps.

1. Construction of generic matrix B(θ) of Ad∗
G. It is calculated from the structure constants

of the Lie algebra by exponentiation. B(θ) is the matrix of an inner automorphism of
the Lie algebra g in the given basis e1, . . . , en, θ = (θ1, . . . , θr ) are group parameters
(coordinates) of Int(g), and

r = dim Ad∗
G = dim Int(g) = n − dim Z(g),

Z(g) is the centre of g.
2. Fundamental lifted invariant. The explicit form of the fundamental lifted invariant

I = (I1, . . . , In) of Ad∗
G in the chosen coordinates (θ, x̌) in Ad∗

G × g∗ is

(I1, . . . , In) = (x1, . . . , xn) · B(θ1, . . . , θr ),

or briefly I = x̌ · B(θ).
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3. Elimination of parameters by normalization. We find a non-singular submatrix

∂
(
Ij1 , . . . , Ijρ

)
∂
(
θk1 , . . . , θkρ

)
of the maximal dimension ρ in the Jacobian matrix ∂I/∂θ and solve the equations
Ij1 = c1, . . . , Ijρ

= cρ with respect to θk1 , . . . , θkρ
. Here the constants c1, . . . , cρ are

chosen to lie in the range of values of Ij1 , . . . , Ijρ
. After substituting the found solutions

into the other lifted invariants, we obtain Ng = n − ρ usual invariants F l(x1, . . . , xn).
4. Symmetrization. The functions F l(x1, . . . , xn) which form a basis of Inv(Ad∗

G) are
symmetrized to Sym F l(e1, . . . , en). It is the desired basis of Inv(g).

Let us give some remarks on steps of the algorithm.
In the first step we usually use second canonical coordinates on Int(g) as group parameters

θ and present the matrix B(θ) in the form

B(θ) =
r∏

i=1

exp
(
θi âden−r+i

)
,

where e1, . . . , en−r are assumed to form a basis of Z(g); adv denotes the adjoint representation
of v ∈ g in GL(g): advw = [v,w] for all w ∈ g, and the matrix of adv in the basis e1, . . . , en

is denoted as âdv . In particular, âdei
= (

ck
ij

)n

j,k=1. Often the parameters θ are additionally
transformed in a light manner (signs, renumbering, re-denotation etc) for simplification of the
final presentation of B(θ). It is also sometimes convenient for us to introduce ‘virtual’ group
parameters corresponding to centre basis elements.

Since B(θ) is a general form of matrices from Int(g), we should not adopt it in any way
for the second step.

In fact, the third step of our algorithm can involve different techniques of elimination of
parameters which are also based on using an explicit form of lifted invariants [2]. The applied
normalization procedure [7, 8] can also be modified and be used in more involved way (see
e.g. section 6.2).

Let us emphasize that the maximal dimension of a non-singular submatrix in the Jacobian
matrix ∂I/∂θ coincides with the rank of coadjoint representation of g, i.e.

rank Ad∗
G = ρ = max

x̌∈Rn
max
θ∈Rr

rank
∂I
∂θ

.

It gives one more formula for calculation of the rank of coadjoint representation.
In conclusion let us underline that the search of invariants of Lie algebra g, which has

been done by solving a linear system of first-order partial differential equations, is replaced
here by the construction of the matrix B(θ) of inner automorphisms and by excluding the
parameters θ from the fundamental lifted invariant I = x̌ · B(θ) in some way.

4. Illustrative example

The six-dimensional solvable Lie algebra ga
6.38 [12] with five-dimensional nilradical g3.1 ⊕2g1

has the following non-zero commutation relations

[e4, e5] = e1, [e1, e6] = 2ae1, [e2, e6] = ae2 − e3, [e3, e6] = e2 + ae3,

[a4, e6] = e2 + ae4 − e5, [e5, e6] = e3 + e4 + ae5, a ∈ R.

Here we have modified the basis to K-canonical form [11], i.e. now 〈e1, . . . , ei〉 is an ideal of
〈e1, . . . , ei, ei+1〉 for any i = 1, 2, 3, 4, 5. (See also [2] for discussion of role of K-canonical
bases in the investigation of solvable Lie algebras.)
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The matrices of the adjoint representation âdei
of the basis elements e1, e2, e3, e4, e5 and

e6 correspondingly have the form

0 0 0 0 0 2a

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,



0 0 0 0 0 0
0 0 0 0 0 a

0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 a

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 a

0 0 0 0 0 −1
0 0 0 0 0 0


,



0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 a

0 0 0 0 0 0


,



−2a 0 0 0 0 0
0 −a −1 −1 0 0
0 1 −a 0 −1 0
0 0 0 −a −1 0
0 0 0 1 −a 0
0 0 0 0 0 0


.

The inner automorphisms of ga
6.38 are then described by the block triangular matrix

B(θ) =
5∏

i=1

exp
(
θi âdei

) · exp
(−θ6âde6

)

=



ε2 0 0 −θ5ε� − θ4εσ −εθ5σ + εθ4� − 1
2θ2

5 + aθ4θ5 − 1
2θ2

4 + 2aθ1

0 ε� εσ θ6ε� θ6εσ θ4 + θ3 + aθ2

0 −εσ ε� −θ6εσ θ6ε� θ5 + aθ3 − θ2

0 0 0 ε� εσ θ5 + aθ4

0 0 0 −εσ ε� aθ5 − θ4

0 0 0 0 0 1


,

where ε = eaθ6 , � = cos θ6, σ = sin θ6. Therefore, a functional basis of lifted invariants is
formed by

I1 = ε2x1,

I2 = ε(�x2 − σx3),

I3 = ε(σx2 + �x3),

I4 = ε((−θ5� − θ4σ)x1 + θ6�x2 − θ6σx3 + �x4 − σx5),

I5 = ε((−θ5σ + θ4�)x1 + θ6σx2 + θ6�x3 + σx4 + �x5),

I6 = (− 1
2θ2

5 + aθ4θ5 − 1
2θ2

4 + 2aθ1
)
x1 + (θ4 + θ3 + aθ2)x2 + (θ5 + aθ3 − θ2)x3

+ (θ5 + aθ4)x4 + (aθ5 − θ4)x5 + x6.

The algebra ga
6.38 has two independent invariants. They can be easily found from first

three lifted invariants by the normalization procedure. Further the cases a = 0 and a 	= 0
should be considered separately since there exists difference between them in the normalization
procedure.

It is obvious in case a = 0 that e1 generating the centre Z
(
g0

6.38

)
is one of the invariants.

The second invariant is found via combining the lifted invariants I2 and I3: I2
2 +I2

3 = x2
2 + x2

3 .
Since the symmetrization procedure is trivial for this algebra we obtain the following set of
polynomial invariants:

e1, e2
2 + e2

3.
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In case a 	= 0 we solve the equation I1 = 1 with respect to e2aθ6 and substitute the
obtained expression e2aθ6 = 1/x1 into the combinations I2

2 + I2
3 and exp(−2a arctan I3/I2).

In view of trivial symmetrization we obtain the final basis of generalized Casimir invariants

e2
2 + e2

3

e1
, e1 exp

(
−2a arctan

e3

e2

)
.

It is equivalent to the one constructed in [4], but it contains no complex numbers and is written
in a more compact form.

5. Notations

Further we use the following notations: diag(α1, . . . , αk) is the k × k diagonal matrix with the
elements α1, . . . , αk on the diagonal; Ek = diag(1, . . . , 1) is the k × k unity matrix; Ek

ij (for
the fixed values i and j ) denotes the k × k matrix (δii ′δjj ′) with i ′ and j ′ running the numbers
of rows and column correspondingly, i.e. the k × k matrix with the unit on the cross of the ith
row and the j th column and the zero otherwise; J k

λ is the Jordan block of dimension k and the
eigenvalue λ:

[
J k

λ

]
ij

=


λ, if j = i,

1, if j − i = 1,

0, otherwise,
i, j = 1, . . . , k,

i.e.

J k
λ =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1
0 0 0 0 · · · λ


, exp

(
θJ k

0

) =



1 θ 1
2!θ

2 1
3!θ

3 · · · 1
(k−1)!θ

k−1

0 1 θ 1
2!θ

2 · · · 1
(k−2)!θ

k−2

0 0 1 θ · · · 1
(k−3)!θ

k−3

· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · θ

0 0 0 0 · · · 1


(let us note that J k

λ = λEk + J k
0 and therefore exp

(
θJ k

λ

) = eλθ exp
(
θJ k

0

)
); Rr

µν is the real
Jordan block of dimension r = 2k, k ∈ N, which corresponds to the pair of two complex
Jordan blocks J k

λ and J k
λ∗ with the complex conjugate eigenvalues λ and λ∗, where µ = Re λ,

ν = Im λ 	= 0:

R2
µν =

(
µ ν

−ν µ

)
, R2k

µν =



R2
µν E2 0 0 · · · 0
0 R2

µν E2 0 · · · 0
0 0 R2

µν E2 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · E2

0 0 0 0 · · · R2
µν




k blocks;

A1 ⊕ A2 is the direct sum
(A1 0

0 A2

)
of the square matrices A1 and A2; A1

C
+ A2 is the block

triangular matrix
(A1 C

0 A2

)
, where A1 ∈ Mk,k, A2 ∈ Ml,l, C ∈ Mk,l .

Above 0 denotes the zero matrices of different dimensions.

6. Solvable algebras with Abelian ideals of codimension 1

Consider a Lie algebra g of dimension n with the Abelian ideal I of dimension n − 1 (cf [11]).
Let us suppose that the ideal I is spanned on the basis elements e1, e2, . . . , en−1. Then the
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algebra g is completely determined by the (n − 1) × (n − 1) matrix M = (mkl) of restriction
of the adjoint action aden

on the ideal I. The (possibly) non-zero commutation relations of g

have the form

[ek, en] =
n−1∑
l=1

mlkel, k = 1, . . . , n − 1.

Due to possibility of scaling en, the matrix M and, therefore, its eigenvalues are determined
up to multiplication on a non-zero number from the field under consideration. The matrix M
is reduced to the Jordan canonical form by change of the basis in I:

M = J
r1
λ1

⊕ · · · ⊕ J
rs

λs
,

where r1 + · · · + rs = n − 1, ri ∈ N, λi ∈ C, i = 1, . . . , s. In the real case the direct sum
of two complex blocks J

ri

λi
and J

rj

λj
, where ri = rj and λi is conjugate of λj , is assumed as

replaced by the corresponding real Jordan block R2ri
µν with µ = Re λi and ν = Im λi 	= 0. The

Jordan canonical form is unique up to permutation of the Jordan blocks.

The above algebra will be denoted as J
r1...rs

λ1...λs
. It is additionally assumed that J

r ′
1...r

′
s′

λ′
1...λ

′
s′

denotes the same algebra if s = s ′ and there exists a non-zero constant � that (λ′
i , r

′
i ) =

(�λi, ri), i = 1, . . . , s, up to permutation of pairs (λi, ri).
The Lie algebra J

r1...rs

λ1...λs
is decomposable iff there exists a value of i such that (λi, ri) =

(0, 1). (Then ei is an invariant of J
r1...rs

λ1...λs
.) Hence the contrary condition is supposed to be

satisfied below. It should be also noted this algebra is nilpotent iff λ1 = · · · = λs = 0.

6.1. Simplest cases

Consider the simplest case for M to be a single Jordan block with the eigenvalue λ, i.e.
g = J

n−1
λ , n = 2, 4, . . . . The value of λ can be normalized to 1 in case λ 	= 0 but it is

convenient for the further consideration to avoid normalization of λ some time.
The non-zero commutation relations of J

n−1
λ at most are

[e1, en] = λe1, [ek, en] = λek + ek−1, k = 2, . . . , n − 1, λ ∈ C.

(The first one is zero if λ = 0.) Therefore, its inner automorphisms are described by the
triangular matrix

B(θ) = exp
(
θnJ

n−1
λ

) C
+ E1, C = (θ2 + λθ1, θ3 + λθ2, . . . , θn−1 + λθn−2, λθn−1)

T,

i.e. a functional basis of lifted invariants is formed by

Îk = eλθnIk, k = 1, . . . , n − 1, În = In + λ

n−1∑
j=1

θjxj ,

where

Ik =
k∑

j=1

θ
k−j
n

(k − j)!
xj , k = 1, . . . , n − 1, In =

n−2∑
j=1

θj+1xj + xn. (1)

The nilpotent (λ = 0) and solvable (λ 	= 0) cases of J
n−1
λ should be considered further

separately since there exists difference in the normalization procedure. The dimension n = 2
is singular in both the cases. J1

0 is the two-dimensional Abelian Lie algebra and therefore
has two independent invariants, namely e1 and e2. J1

1 is the two-dimensional non-Abelian Lie
algebra and therefore has no invariants. We assume below that n � 3.
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The algebra J
n−1
0 is, in some sense, the simplest filiform algebra of dimension n. Let us

note that the adjoint representation of J
n−1
0 is unfaithful since the centre Z

(
J

n−1
0

) = 〈e1〉 	= {0}.
Therefore, there are n − 1 parameters in the expression of B(θ) excluding θ1, and Î coincides
with I. It is obvious that the element e1 generating Z

(
J

n−1
0

)
is one of the invariants, which

corresponds to I1 = x1. Another (n − 3) invariants are found by the normalization procedure
applied to the lifted invariants I2, . . . , In−1. Namely, we solve the equation I2 = 0 with
respect to θn and then substitute the obtained expression θn = −x2/x1 into the other I’s.
To construct polynomial invariants finally, we multiply the derived invariants by powers of
the invariant x1. Since the symmetrization procedure is trivial for this algebra, we get the
following complete set of independent generalized Casimir operators which are classical (i.e.
polynomial) Casimir operators:

ξ1 = e1, ξk =
k∑

j=1

(−1)k−j

(k − j)!
e
j−2
1 e

k−j

2 ej , k = 3, . . . , n − 1. (2)

This set was first constructed by the moving frame approach in example 6 of [2] and completely
coincides with the one determined in lemma 1 of [15] and theorem 4 of [20].

In case λ 	= 0 the n − 2 invariants of J
n−1
λ are found by the normalization procedure

applied to the lifted invariants Î1, . . . , În−1. We solve Î2 = 0 with respect to the parameter
θn. Substitution of the obtained expression θn = −x2/x1 into Î1 and Îk/Î1, k = 3, . . . , n − 1,
results in a basis of Inv

(
J

n−1
λ

)
:

ζ1 = e1 exp

(
−λ

e2

e1

)
, ζk = ξk

ξ k−1
1

, k = 3, . . . , n − 1,

where ξk, k = 1, 3, . . . , n − 1, are defined by (2).
This set of invariants completely coincides with the one determined in lemma 2 of [15].

We only use exponential function instead of the logarithmic one in the expression of the first
invariant. Let us emphasize that any basis of Inv

(
J

n−1
λ

)
contains at least one transcendental

invariant. The other basis invariants can be chosen rational.
The real version J

n−1
(µ,ν) of the complex algebra Jrr

λλ∗ , where n = 2r + 1, r ∈ N, µ =
Re λ, ν = Im λ 	= 0, has the non-zero commutation relations

[e1, en] = µe1 − νe2, [e2, en] = νe1 + µe2,

[e2k−1, en] = µe2k−1 − νe2k + e2k−3, [e2k, en] = νe2k−1 + µe2k + e2k−2, k = 2, . . . , r.

A complete tuple Î of lifted invariants has the form

Î2k−1 = eµθn(I2k−1 cos νθn − I2k sin νθn), Î2k = eµθn(I2k−1 sin νθn + I2k cos νθn),

În =
r∑

j=1

(θ2j−1(µx2j−1 − νx2j ) + θ2j (νx2j−1 + µx2j )) +
r−1∑
j=1

(θ2j+1x2j−1 + θ2j+2x2j ) + xn,

where k = 1, . . . , r ,

I2k−1 =
k∑

j=1

θ
k−j
n

(k − j)!
x2j−1, I2k =

k∑
j=1

θ
k−j
n

(k − j)!
x2j .
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The normalization procedure is conveniently applied to the following combinations of the
lifted invariants: Î2k−1, Î2k, k = 1, . . . , r:

Î 2
1 + Î 2

2 = (
x2

1 + x2
2

)
e2µθn , arctan

Î2

Î1
= arctan

x2

x1
+ νθn,

Î1Î3 + Î2Î4

Î 2
1 + Î 2

2

= x1x3 + x2x4

x2
1 + x2

2

+ θn,
Î2Î3 − Î1Î4

Î 2
1 + Î 2

2

= x2x3 − x1x4

x2
1 + x2

2

,

Î1Î2k−1 + Î2Î2k

Î 2
1 + Î 2

2

= x1I2k−1 + x2I2k

x2
1 + x2

2

,
Î2Î2k−1 − Î1Î2k

Î 2
1 + Î 2

2

= x2I2k−1 − x1I2k

x2
1 + x2

2

, k = 3, . . . , r.

We use the condition that the third combination (or second one if n = 3) equals to 0 as a
normalization equation on the parameter θn and then exclude θn from the other combinations.
It gives the basis of Inv

(
J

n−1
(µ,ν)

)
ζ1 = (

e2
1 + e2

2

)
exp

(
−2

µ

ν
arctan

e2

e1

)
,

ζ3 = ν
e1e3 + e2e4

e2
1 + e2

2

− arctan
e2

e1
, ζ4 = e1e4 − e2e3

e2
1 + e2

2

,

ζ2k−1 = e1ζ̂2k−1 + e2ζ̂2k

e2
1 + e2

2

, ζ2k = e2ζ̂2k−1 − e1ζ̂2k

e2
1 + e2

2

, k = 3, . . . , r,

where

ζ̂2k−1 =
k∑

j=1

(
−e1e3 + e2e4

e2
1 + e2

2

)k−j
e2j−1

(k − j)!
, ζ̂2k =

k∑
j=1

(
−e1e3 + e2e4

e2
1 + e2

2

)k−j
e2j

(k − j)!
.

Therefore, J2
(µ,ν) has unique independent invariant ζ1 which is necessarily transcendental. In

case n = 2r + 1 � 5 any basis of Inv
(
J

n−1
(µ,ν)

)
contains at least two transcendental invariants;

the other n − 4 basis invariants can be chosen rational. A quite optimal basis with minimal
number of transcendental invariants is formed by ζk, k = 1, 3, . . . , n − 1.

6.2. General case

The inner automorphisms of J
r1···rs

λ1···λs
are described by the triangular matrix

B(θ) = (
exp

(
θnJ

r1
λ1

) ⊕ · · · ⊕ exp
(
θnJ

rs

λs

)) C
+ E1, C = (

C
r1
λ1

, . . . , C
rs

λs

)T
,

C
rj

λj
= (

λjθρj +1 + θρj +2, . . . , λj θρj +rj −1 + θρj +rj
, λj θρj +rj

)
, j = 1, . . . , s,

ρ1 = 0, ρj = r1 + · · · + rj−1, j = 2, . . . , s.

The corresponding complete tuple Î = x̌ · B(θ) of lifted invariants has the form

Îρj +q = eλj θn

q∑
p=1

1

(q − p)!
θq−p
n xρj +p, j = 1, . . . , s, q = 1, . . . , rj ,

În =
s∑

j=1

(
λj

rj∑
q=1

θρj +qxρj +q +
rj −1∑
q=1

θρj +q+1xρj +q

)
+ xn.

This tuple is obviously modified in the real case with complex eigenvalues.
The n − 2 invariants are found by the normalization procedure applied to the lifted

invariants Î1, . . . , În−1 in different ways. We can either use the same normalization equation
for all Jordan blocks or normalize lifted invariants for each Jordan block separately and then
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simultaneously normalize some lifted invariants corresponding to different Jordan blocks.
Intermediate variants are also possible. In any case, the procedure is reduced to choice of
n − 2 pairs from the lifted invariants Î1, . . . , În−1. The first term of each pair gives the
left-hand side of the corresponding normalization equations. Substitution of the obtained
value of the parameter θn into the second term of the pair results in an invariant of J

r1···rs

λ1···λs
.

The constructed invariants form a basis of Inv
(
J

r1···rs

λ1···λs

)
iff each from the lifted invariants

Î1, . . . , În−1 falls within the n − 2 chosen pairs at least once.
We use the strategy based on initial normalization of lifted invariants for each Jordan

block separately. Then it is sufficient for us to describe the procedure for different kinds
of pairs of Jordan blocks. Below we adduce short explanation on these pairs together
with the optimally used pairs of lifted invariants and obtained invariants of the algebra; i,

j = 1, . . . , s.

J
ri

λi
, J

rj

λj
:

λi 	= 0, λj 	= 0: Îρi+1, Îρj +1, e
−λj

ρi+1e
λi

ρj +1;
ri � 2, λi = 0, rj � 2, λj = 0: Îρi+2, Îρj +2, eρj +2eρi+1 − eρi+2eρj +1;
ri � 2, λi 	= 0, rj � 2, λj = 0: Îρi+2, Îρj +2,

eρj +2

eρj +1
− eρi+2

eρi+1
;

ri = 1, λi 	= 0, rj � 2, λj = 0: Îρi+1, Îρj +2, eρi+1 exp

(
−λi

eρj +2

eρj +1

)
;

J
ri

λi
, R2rj

µj νj
, λi, µj , νj ∈ R, νj 	= 0:

ri � 2, rj � 2: Îρi+2,
Îρj +2Îρj +3 − Îρj +1Îρj +4

Î2
ρj +1 + Î 2

ρj +2

,
eρj +1eρj +3 + eρj +2eρj +4

e2
ρj +1 + e2

ρj +2

− eρi+2

eρi+1
;

ri = 1 or rj = 1: Îρi+1, arctan
Îρj +2

Îρj +1
, eρi+1 exp

(
−λi

νj

arctan
eρj +2

eρj +1

)
;

R2ri

µiνi
, R2rj

µj νj
, µi, νi, µj , νj ∈ R, νiνj 	= 0:

ri � 2, rj � 2:
Îρi+2Îρi+3 − Îρi+1Îρi+4

Î 2
ρi+1 + Î 2

ρi+2

,
Îρj +2Îρj +3 − Îρj +1Îρj +4

Î 2
ρj +1 + Î 2

ρj +2

,

eρj +1eρj +3 + eρj +2eρj +4

e2
ρj +1 + e2

ρj +2

− eρi+1eρi+3 + eρi+2eρi+4

e2
ρi+1 + e2

ρi+2

;

ri = 1 or rj = 1: arctan
Îρi+2

Îρi+1
, arctan

Îρj +2

Îρj +1
, νi arctan

eρj +2

eρj +1
− νj arctan

eρi+2

eρi+1
.

The marginal case is r1 = · · · = rs = 1, i.e. all Jordan blocks are one-dimensional. Let us
recall that λk is assumed non-zero if rk = 1. A complete set of generalized Casimir operators
is formed by e

−λj

1 e
λ1
j , j = 2, . . . , n − 1. In case λj/λ1 ∈ Q, the invariants can be made

rational with raising to a power. If additionally λj/λ1 have the same sign, Inv
(
J

r1···rs

λ1···λs

)
has a

polynomial basis, i.e. a basis consisting of usual Casimir operators.
Therefore, Inv

(
J

r1···rs

λ1···λs

)
has a polynomial basis only in two cases

(1) λ1 = · · · = λs = 0, i.e. the algebra is nilpotent;

(2) s = n − 1 > 2, rj = 1, λj /λ1 are rational and have the same sign, j = 2, . . . , n − 1.
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7. Solvable Lie algebras with nilradical Jn−1
0

Let us pass to complex indecomposable solvable Lie algebras with the nilradicals isomorphic
to J

n−1
0 , n = 4, 5, . . . . All possible types of such algebras are described in theorems 1–3 of

[20]. Their dimensions can be equal to n + 1 or n + 2. Below we adduce only the non-zero
commutation relations, excluding ones between basis elements of the nilradicals:

[ek, en] = ek−1, k = 2, . . . , n − 1.

There exist three inequivalent classes of such algebras of dimension n + 1. The first series
s1,n+1 is formed by Lie algebras s

αβ

1,n+1 with the additional non-zero commutation relations

[ek, en+1] = γkek, k = 1, . . . , n − 1, [en, en+1] = αen.

where γk := (n− k − 1)α + β. Due to scale transformations of en+1 the parameter tuple (α, β)

can be normalized to belong to the set {(1, β), (0, 1)}. We assume below that the parameters
take only the normalized values. Then any algebras in the series s1,n+1 are inequivalent to
each other. For the values (α, β) ∈ {(1, 0), (1, 2 −n), (0, 1)} the corresponding algebras have
some singular properties.

The second class consists of the unique algebra s2,n+1:

[ek, en+1] = γkek, k = 1, . . . , n − 1, [en, en+1] = en + en+1,

where γk := n − k.
The Lie algebra s

a3,...,an−1
3,n+1 from the latter (n− 3)-parametric series s3,n+1 is determined by

the commutation relations

[ek, en+1] = ek +
k−2∑
i=1

ak−i+1ei, k = 1, . . . , n − 1,

where aj ∈ C, j = 3, . . . , n − 1, and aj 	= 0 for some values of j .
The unique (n + 2)-dimensional algebra s4,n+2 of such type has the additional non-zero

commutation relations

[ek, en+1] = γkek, [en, en+1] = en, [ek, en+2] = ek, k = 1, . . . , n − 1,

where γk := n − k − 1.
The matrices determining the inner automorphisms of the above algebras are conveniently

presented in the form B(θ) = B1B2B3, where

B1 = exp
(
θ1âde1

) · · · exp
(
θn−1âden−1

)
, B2 = exp

(−θnâden

)
, B3 = exp

(−θn+1âden+1

)
,

excluding the (n + 2)-dimensional case where B3 = exp
(−θn+1âden+1

)
exp

(−θn+2âden+2

)
. The

matrices B1, B2 and B3 are written in a block form corresponding to partition of a basis of
the algebra under consideration to the basis e1, . . . , en−1 of the maximal Abelian ideal and a
complementary part.

For the algebra s
αβ

1,n+1

B1 = En−1 C
+ E2,

B2 = exp
(
θnJ

n−1
0

) ⊕
(

1 −αθn

0 1

)
, C =


θ2 γ1θ1

θ3 γ2θ2

· · · · · ·
θn−1 γn−2θn−2

0 γn−1θn−1

 ,

B3 = diag(eγ1θn+1 , . . . , eγn−1θn+1) ⊕ diag(eαθn+1 , 1).
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Therefore, the corresponding complete tuple Î = x̌ · B(θ) of lifted invariants has the form

Îk = eγkθn+1Ik, k = 1, . . . , n − 1,

În = eαθn+1In, În+1 = −αθnIn + In+1.

Here I1, . . . , In are defined by (1), and

In+1 :=
n−1∑
j=1

γj θjxj + xn+1.

For the algebra s2,n+1 only the matrices B2 and B3 and the lifted invariants În and În+1

differ from those of the previous algebras:

B2 = exp
(
θnJ

n−1
0

) ⊕
(

1 e−θn − 1
0 e−θn

)
,

B3 = diag(eγ1θn+1 , . . . , eγn−1θn+1) ⊕
(

eθn+1 0
eθn+1 − 1 1

)
,

În = (eθn+1−θn − e−θn + 1)In + e−θn (eθn+1 − 1)In+1, În+1 = (e−θn − 1)In + e−θnIn+1.

All the (n + 1)-dimensional algebras under consideration have exactly n − 3 independent
invariants which can be found by the normalization procedure applied to the lifted invariants
Î1, . . . , În−1. Since the invariants of these algebras depend only on the element of the Abelian
ideal the symmetrization procedure is trivial and can be omitted as a step of the algorithm.

For the algebras s
αβ

1,n+1, (α, β) 	= (1, 2−n) and s2,n+1 we solve equations Î1 = 1 and Î2 = 0

with respect to the values eθn+1 and θn. Substituting the obtained expressions eθn+1 = x
−1/γ1
1

and θn = −x2/x1 into the other Î’s, we get the following complete set of generalized Casimir
operators

ξ
−(k−1)

(n−3)α+β

(n−2)α+β

1 ξk, k = 3, . . . , n − 1,

where ξk, k = 1, 3, . . . , n − 1, are defined by (2). For the algebra s2,n+1 the value α = β = 1
should be taken.

The algebra s
1,2−n
1,n+1 is singular with respect to the normalization procedure and will be

studied separately. In this case γ1 = 0 and Î1 = x1 hence the basis element e1 generating
the centre of s

1,2−n
1,n+1 is one of the invariants. We obtain the expressions for θn and eθn+1 from

the system Î2 = 0, Î3 = 1 and substitute them into the other Î’s. Additionally we use the
possibility of multiplication of invariants by powers of the invariant x1. The resulting complete
set of generalized Casimir operators is formed by

ξ1,
ξ 2
k

ξ k−1
3

, k = 4, . . . , n − 1.

Calculations for the Lie algebra s
a3,...,an−1
3,n+1 are analogous but more complicated:

B1 = En−1 C
+ E2, C =



θ2 θ1 + a3θ3 + a4θ4 + · · · + an−1θn−1

θ3 θ2 + a3θ4 + a4θ5 + · · · + an−2θn−1

· · · · · ·
θn−3 θn−3 + a3θn−2

θn−1 θn−2

0 θn−1


,

B2 = exp
(
θnJ

n−1
0

) ⊕ E2,

B3 = eθn+1

(
En−1 +

n−2∑
m=2

(
J n−1

0

)m
[ m

2 ]∑
i=1

bmi

i!
θ i
n+1

)
⊕ E2, bmi =

∑
3�s1,...,si�n−1
s1+···+si=m+i

as1 · · · asi
.
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The corresponding complete tuple Î = x̌ · B(θ) of lifted invariants has the form

Îk = eθn+1

(
Ik +

k−1∑
m=2

Ik−m

[ m
2 ]∑

i=1

bmi

i!
θ i
n+1

)
, k = 1, . . . , n − 1,

În = In, În+1 = In+1 +
n−1∑
k=1

xk

n−k−2∑
i=1

θk+1+iai+2.

The Lie algebra s
a3,...,an−1
3,n+1 has n − 3 invariants for any values of the parameters. Applying

the normalization procedure to Î, we solve the system I1 = 1, I2 = 0 with respect to θn and
θn+1. Substitution of the obtained expressions θn = −x2/x1 and θn+1 = −ln x1 into the other
I’s gives the following complete set of generalized Casimir operators:

ξ−k+1
1 ξk +

k−1∑
m=2

ξ−k+m+1
1 ξk−m

[ m
2 ]∑

i=1

bmi

i!
(−ln ξ1)

i, k = 3, . . . , n − 1,

where ξk, k = 1, 3, . . . , n − 1, are defined by (2).
For the algebra s4,n+2

B1 = En−1 C
+ E3, C =


θ2 γ1θ1 θ1

θ3 γ2θ2 θ2

· · · · · · · · ·
θn−1 γn−2θn−2 θn−2

0 γn−1θn−1 θn−1

 , γk := n − k − 1,

B2 = exp
(
θnJ

n−1
0

) ⊕
1 −θn 0

0 1 0
0 0 1

 ,

B3 = eθn+2 diag(eγ1θn+1 , . . . , eγn−1θn+1) ⊕ diag(eαθn+1 , 1, 1),

i.e. the tuple Î = x̌ · B(θ) of lifted invariants has the form

Îk = eγkθn+1+θn+2Ik, k = 1, . . . , n − 1,

În = eθn+1In, În+1 = In+1 − θnIn, În+2 = In+2 :=
n−1∑
j=1

θjxj + xn+2.

The n − 4 invariants of s4,n+2 are found by the normalization procedure applied to the
lifted invariants Î1, . . . , În−1. We solve the system Î1 = 1, Î2 = 0, Î3 = 1 with respect to the
parameters θn, θn+1 and θn+2 and then exclude them from the other Î’s. As a result, we obtain
a complete set of invariants of s4,n+2:

ξ 2
k

ξ k−1
3

, k = 4, . . . , n − 1,

where ξk, k = 3, . . . , n − 1, are defined by (2).
The sets of generalized Casimir invariants for the Lie algebras with the nilradicals

isomorphic to J
n−1
0 , which are constructed in this section, coincide with the ones determined

in theorems 5 and 6 of [20].
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8. Nilpotent algebra of strictly upper triangle matrices

Consider the nilpotent Lie algebra t0(n) isomorphic to the one of strictly upper triangle n × n

matrices. t0(n) has dimension n(n−1)/2. It is the Lie algebra of the Lie group T0(n) of upper
unipotent n × n matrices, i.e. upper triangular matrices with the unities on the diagonal.

Its basis elements are convenient to enumerate with the ‘increasing’ pair of indices
similarly to the canonical basis

{
En

ij , i < j
}

of the isomorphic matrix algebra. Thus, the basis
elements eij ∼ En

ij , i < j , satisfy the commutation relations

[eij , ekl] = δjkeil − δliekj ,

where δij is the Kronecker delta.
Hereafter the indices i, j, k and l run at most from 1 to n. Only additional constraints on

the indices are indicated.
Let e∗

ji , xji and yij denote the basis element and the coordinate function in the dual space
t∗0(n) and the coordinate function in t0(n), which correspond to the basis element eij , i < j .
We complete the sets of xji and yij to the matrices X and Y with zeros. Hence X is a strictly
lower triangle matrix and Y is a strictly upper triangle one.

Lemma 1. A complete set of independent lifted invariants of Ad∗
T0(n) is exhausted by the

expressions

Iij = xij +
∑
i<i ′

bii ′xi ′j +
∑
j ′<j

bj ′j xij ′ +
∑

i<i ′,j ′<j

bii ′ b̂j ′j xi ′j ′ , j < i,

where B = (bij ) is an arbitrary matrix from T0(n); B̂ = (̂bij ) is the inverse matrix of B.

Proof. The adjoint action of B ∈ T0(n) on the matrix Y is AdBY = BYB−1, i.e.

AdB

∑
i<j

yij eij =
∑
i<j

(BYB−1)ij eij =
∑

i�i ′<j ′�j

bii ′yi ′j ′ b̂j ′j eij .

After changing eij → xji, yij → e∗
ji , bij ↔ b̂ij in the latter equality, we obtain the

representation for the coadjoint action of B

Ad∗
B

∑
i<j

xjie
∗
ji =

∑
i�i ′<j ′�j

bj ′j xji b̂ii ′e
∗
j ′i ′ =

∑
i ′<j ′

(BXB−1)j ′i ′e
∗
j ′i ′ .

Therefore, the elements Iij , j < i, of the matrix

I = BXB−1, B ∈ T0(n),

form a complete set of independent lifted invariants of Ad∗
T0(n). �

Note 1. The centre of the group T0(n) is Z(T0(n)) = {
En + b1nE

n
1n, b1n ∈ F

}
. The inner

automorphism group of t0(n) is isomorphic to the factor-group T0(n)/Z(T0(n)) and hence its
dimension is 1

2n(n− 1)− 1. The parameter b1n in the above representation of lifted invariants
is inessential.

Below A
i1,i2
j1,j2

, where i1 � i2, j1 � j2, denotes the submatrix (aij )
i=i1,...,i2
j=j1,...,j2

of a matrix
A = (aij ).

Lemma 2. A set of independent invariants of Ad∗
T0(n) is given by the expressions

det Xn−k+1,n
1,k , k = 1, . . . ,

[n

2

]
.
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Proof. The derived formula for I and (triangle) structure of the matrices B and X imply that

In−k+1,n
1,k = B

n−k+1,n
n−k+1,nX

n−k+1,n
1,k B̂

1,k
1,k , k = 1, . . . ,

[n

2

]
.

(These submatrices have size k × k and lie in the left lower angle of I, in the right lower angle
of B, in the left lower angle of X and in the left upper angle of B̂ correspondingly.) Then

det In−k+1,n
1,k = det Xn−k+1,n

1,k , k = 1, . . . ,
[n

2

]
,

since det Bn−k+1,n
n−k+1,n = det B̂1,k

1,k = 1, i.e. det Xn−k+1,n
1,k are invariants of Ad∗

T0(n) in view of the
definition of invariant. Functional independence of these invariants is obvious. �

Lemma 3. The number of independent invariants of Ad∗
T0(n) is not greater than

[
n
2

]
.

Proof. Since det B = 1, b̂ij for i < j is algebraic complement to bij and then

b̂ij = (−1)i+j det Bi,j−1
i+1,j = −bij + · · · ,

where the rest terms are polynomial in bi ′j ′ , i ′ = i, . . . , j − 1, j ′ = i + 1, . . . , j, (i ′, j ′) 	=
(i, j), i ′ < j ′. These elements bi ′j ′ are over the leading diagonal of B and not to the right of
and not over bij .

We order and enumerate the lifted invariants Iij , j < i, i + j 	= n + 1, in the following
way:

In−k+1,j , j = 1, . . . , min(k − 1, n − k), Iik, i = max(k + 1, n − k + 2), . . . , n,

k = 2, . . . , n − 1,

and then enumerate them. The numeration matrix will look as

×
mn−1 ×
mn−5 mn−4 ×
mn−11 mn−10 mn−9 ×

· · · · · · · · · · · · · · ·
7 8 9 × . . . ×
3 4 × 10 . . . mn−6 ×
1 × 5 11 . . . mn−7 mn−2 ×
× 2 6 12 . . . mn−8 mn−3 mn ×


,

where

mn = n(n − 1)

2
−

[n

2

]
.

The obtained tuple of lifted invariants is denoted by I≺.
In similar way we order and enumerate the parameters bij , i < j, i + j 	= n + 1:

bn−k+1,j , j = max(k + 1, n − k + 2), . . . , n, bik, i = 1, . . . , min(k − 1, n − k),

k = 2, . . . , n − 1.

The corresponding numeration matrix is obtained from the previous numeration matrix with
transposition and inversion of order of choosing pairs from rows and columns. The obtain
tuple of parameters is denoted by b�.

In view of the representation of lifted invariants, the Jacobian matrix ∂I≺/∂b� is block
lower triangle of dimension mn with the non-singular blocks

X
n−k+1,n
1,k ,

(
X

n−k+1,n
1,k

)T
, k = 1, . . . ,

[n

2

]
,

X
n−k+1,n
1,k ,

(
X

n−k+1,n
1,k

)T
, k =

[n

2

]
, . . . , 1,
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on the leading diagonal. Therefore, this matrix is non-singular and the rank of the complete
Jacobian matrix of derivatives of the lifted invariants with respect to the parameters is not less
than mn. Then the number of independent invariants of t0(n) is

Nt0(n) = dim t0(n) − rank t0(n) � n(n − 1)

2
− mn =

[n

2

]
.

�

Theorem 1. A basis of Inv(t0(n)) is formed by the Casimir operators

det(eij )
i=1,...,k
j=n−k+1,n, k = 1, . . . ,

[n

2

]
.

Proof. Lemmas 2 and 3 immediately result in that the expressions from lemma 2 form a basis
of Inv

(
Ad∗

T0(n)

)
. Since the basis elements corresponding the coordinate functions in these

expressions commutate to each other, the symmetrization procedure is trivial. �

The above basis of invariants was first obtained in a quite heuristic way in [22].

9. Concluding remarks

The algebraic algorithm for computing the invariants of Lie algebras by means of moving
frames of [2], intended originally for Lie algebras of fixed relatively dimension, is shown to
be an efficient method for computing invariant operators for families of solvable Lie algebras,
which share the same structure of nilradicals, but are of general dimension n < ∞. Moreover,
it is clear from the results in this paper that the method is neither limited to such Lie algebras
nor to the problem of finding generalized Casimir operators.

There are two other very different challenging problems in Lie theory which we want to
point out in the expectation that the moving frame method could be adapted to their solution.

Consider a pair of Lie algebras g and g′ such that g ⊃ g′. The generalized Casimir
operators, we are finding here, clearly stabilize g′ inside g. One may expect that there are
other functions of elements of g that commute with the subalgebra g′. What are they? and
what is their basis? Among semisimple Lie algebras, the answer has been given for two cases.
Namely SU(3) ⊃ O(3) in [10], and SU(4) ⊃ SU(2) × SU(2) in [18]. In the first case there
are two additional operators in the universal enveloping algebra of SU(3) that commutate with
the subalgebra (but do not commute among themselves!). In the second case, four additional
operators were found, two and two commuting.

The generalized Casimirs can be interpreted as a basis for the trivial one-dimensional
representation of g. The second problem is to describe basis operators for other representations
of g than the one-dimensional that, for example, for the adjoint representation of g. The
answer to this question has been given for many semisimple Lie algebras and for their various
representations. See [16] and references therein.

We hope that the developed approach will be effectively used in other areas of mathematics
and physics where the problem of finding functional bases of invariants of Lie algebras is actual.
This approach can be extended in a natural way to invariants of Lie superalgebras, Poisson–Lie
algebras etc. Investigation of (generalized) Casimir invariants of such algebras is an important
problem of theoretical and mathematical physics, in particular, of the theory of integrable and
superintegrable systems.

In case of low-dimensional Lie algebras our method can be easy realized by means of
symbolic calculation packages.



130 V Boyko et al

Acknowledgments

The work was partially supported by the National Science and Engineering Research Council
of Canada, by MITACS. The research of RP was supported by Austrian Science Fund (FWF),
Lise Meitner project M923-N13. VB is grateful for the hospitality of the Centre de Recherches
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